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Introduction
“Data centric AI is the discipline of systematically 
engineering the data used to build an AI system,” 
according to legendary AI researcher Andrew Ng. 

In other words, it’s focusing on updating the data to 
solve a problem versus changing the algorithm or 
code. That’s a complete reversal of how we’ve thought 
about AI up until now. 

Over the last decade, researchers focused on code 
and algorithms first and foremost. They’d import the 
data once and generally leave it fixed. If there were 
problems with noisy data or bad labels they’d usually 
work to overcome it in the code. 

Because we spent so much time working on the 
algorithms, they’re largely a solved problem for 
many use cases like image recognition or text 
translation. Swapping them out for a new algorithm 
often doesn’t make much difference. You may get 
marginally better performance with a transformer 
versus a convolutional net but not enough to really 
move the needle of accuracy. Even tuning parameters 
probably won’t help all that much. Are you really 
going to stumble on a better architecture than Fast-
R-CNN or YOLO for object detection by pushing and 
pulling random levers in your hyperparameters if your 
team doesn’t have a huge number of dedicated AI 
researchers?  Almost certainly not.

Data centric AI flips that on its head and says we 
should go back and fix the data itself: clean up the 
noise. Augment the data set to deal with it. Re-label 
so it’s more consistent.
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Defining Data-Centric AI 
Data centric AI is one of those intuitive concepts 
that just makes sense once you hear it. But what 
does it mean in the real world?  How do you put it 
into practice?  How do you focus back on data in a 
practical and actionable way? 

There are six essential ingredients to putting data-
centric AI into practice in your organization:

 ◆ Creative thinking

 ◆ Synthetic data

 ◆ Data augmentation

 ◆ Tooling

 ◆ Testing

 ◆ Clarifying instructions

Notice I didn’t call them steps. That’s deliberate, 
because I don’t want you thinking about these as a 
series of steps you do in some kind of order. Instead, 
think of them as a set of ingredients you can pull from to make lots of different solutions, just as you can make 
lots of different kinds of food from the same set of ingredients. All of these approaches to solving data-centric 
problems are interlinked and you’re likely to use a number of them at the same time to solve each challenge.

But there is one ingredient you’ll need on every data-centric AI solution:

Your mind. 

Solving Data-Centered Problems Means Changing Your Perspective
No matter what, you’re going to have to think about problems differently. 

Each problem will require a unique creative solution. It will also involve a different set of skills than typical 
data science skills. Depending on the format of your data, you may need an IT specialist, an audio engineer, a 
programmer, or a graphic designer on your team to solve the problem. 

Example: Data-Centric Speech Recognition

The Problem 

Imagine you’re developing a speech recognition 
model to detect commands in a car. You discover 
the model performs well in most scenarios, but 
really struggles with background noise, and your 
customers expect their voice commands to work even 
with traffic, music, children, or weather noise in the 
background - after all, those are normal conditions 
encountered while driving. 

Model-centric ML Data-centric ML

Working on code is the 
central objective

Working on data is the 
central objective

Optimizing the model so 
it can deal with the noise 

in the data 

Rather than gathering 
more data, more 

investment is being made 
in data quality tools to 

work on noisy data

Inconsistent data labels Data consistency is key

Data is fixed after 
standard preprocessing Code/algorithms are fixed

Model is improved 
iteratively Iterated the data quality

vs

What are the differences between  
Model-Centric and Data-Centric ML?

Source:  A Chat with Andrew: From Model Centric to Data-Centric AI

Source: Audacity by Author
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How do you fix it? 

Data centric AI demands creative problem solving 
and thinking through the solution from start to finish. 
We can take different approaches to solving our 
problem, but we always start with the data. 

You pull as many noisy samples from the data 
as possible and listen to them. What kinds of 
background noise are you hearing? Kids screaming? 
Wind noise from an open window? A loud radio? 

Now you have something to go on.  But what’s a 
data-centric scientist to do? Does that mean you 
have to go out and record a few thousand hours of 
noisy samples? It’s a daunting and time consuming 
proposition… It’s enough to make anyone go right 
back to trying to find a better algorithm.

Solution: Feed the model what it needs to filter

A data-centric approach would be to collect samples 
of background noise from audio libraries that match 
the types of background noise your customers will 
encounter on the road: Wind noise. Rain. Thunder. 
Kids playing, talking, and shouting “are we there yet”!?  
Music samples played at different levels. 

Now, an audio engineer can add these to your existing 
samples and output a set of new examples. 

To scale it up, you have the programming team write 
some code to add random noise samples to your 
existing examples, creating lots of permutations of 
the original dataset. 

Now you have the same samples but you’ve added a 
bunch of background noise, generating new samples 
to train from and that may help the algorithm learn 
how to best deal with background noise.

You might also take existing audio and run it through 
distortion effects. Make it sound more metallic or 
grainy with filters. Add little skips and pauses into the 
data. Lower the sound and raise it in a wave pattern 
through the file. Now you’ve got some parts of the 
sound effects where the voice is suddenly lower and 
then higher. All of this may help your model learn lots 
of different representations and edge cases where 
people’s voices trail off, stop short, or get softer in 
response to the environment.

And just like that - you’ve worked with two key 
ingredients in our list:

 ◆ Synthetic data

 ◆ Data augmentation

Reality Augmented
In the voice command example, the first solution presented is synthetic data. That’s where you’ve crafted 
wholly new samples by adding wind and storms and musical samples to the background of your files. They’re 
not naturally recorded samples. They’re hand-crafted and/or created programmatically. 

The second technique is data augmentation. That’s more straightforward: it involves running data through 
filters or altering it slightly, not building new versions of data that don’t exist. For instance, if you were building an 
object detection model, you may just run images through a simple program that distorts the image slightly or 
flips an image. In the car image below, we simply flipped the car horizontally to create more data permutations.
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You may start to worry that you haven’t perfectly recreated the background noise of a car with either of these 
techniques. But to the model, it may be good enough to make it generalize to the real world. Synthetic and 
augmented data doesn’t have to be perfect in every case. It just has to give the model the chance to learn 
more about edge cases.

When research houses like OpenAI and DeepMind work with gigantic data sets, what are they really looking 
for in those massive troves of data? Edge cases. The bigger the dataset, the more chances that you have lots of 
strange edge cases - so the model has a better chance of learning them. 

But you don’t need a massive data set when you’re building something very specific, such as our model to 
detect voice commands in a car setting. Unlike the huge general purpose foundational models like GPT-3 
that try to understand lots of different types of speech in many different contexts, our model is looking to 
understand voice commands in a very narrow and specific context.

Managing Augmented Data Storage Needs

That said, if you’re paying close attention you might realize that you’re increasing the amount of data with each 
of these techniques. That might not be a problem if you’re creating more text files, but it can be a major factor 
if you’re creating more unstructured data like audio, images and video. Make sure you’ve got the right amount 
of storage space to deal with the growth as it can multiply quickly. 

If you’re flipping all your images, like in our car picture above, your data grows by a factor of two. If you’re adding 
lots of different filters on sounds they can grow by a factor of five, ten or more.

There are a few things you can do to control that growth. 

The first option is online augmentation, or augmentation on-the-fly. It may seem obvious that you need to 
generate all your data in batches before you train the model, but that’s not always the case. In some simpler 
cases of data augmentation, like flipping images, you can perform transformation in mini-batches with GPUs 
and throw that data away. 

But that won’t work with complex transformations like adding background noise to files. The load of 
transforming the data would add orders of magnitude to your training time as you waited for programs to 
finish combining audio files and outputting new ones, even if the programs worked in parallel to your training. 
In that case you’re going to need to do the data transformations in batches ahead of time.

That’s where another one of our ingredients comes into play: The right tooling.

The Right Tool for the Right Job
The right tooling is essential to a data-centric AI approach. 

Unfortunately, most MLOps platforms, especially the all-in-one solutions, 
are model-centric. 

As data-centric AI moves to the fore, we’re starting to see more data versioning and lineage systems on the 
market. The default of most engines is to simply make complete copies of the data when you add a new 
version. That might work for smaller files, like text files, but it’s a disaster if you’re building lots of new audio or 
video files. You could quickly see exponential growth in your dataset and send your cloud storage soaring if 
you’re not careful. 
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You’ll want a data engine that’s capable of deduplication in the file system. This keeps copies of only the 
changes and differences between files rather than complete copies of each file. Pachyderm’s built in copy-on-
write style file system does that for you, deduplicating the data to keep it small. 

Pachyderm’s key capabilities for data-centric AI go well beyond just deduplication. At its heart, Pachyderm 
is a data orchestration engine. If you take a look at the AI Infrastructure Alliance’s enterprise stack blueprint, 
you’ll see that the diagram divides up the stack into data engineering orchestration pipelines and data science 
experimentation pipelines. 

Packaged, “all-in-one” MLOps software assumes that all orchestration pipelines are the same, and that you 
need the same style of pipeline for data science and data engineering - but this is simply not the case. 

The majority of these tools are focused strictly on the data science experimentation pipelines. That’s where 
data scientists try different algorithms, tune hyperparameters and test their theories about how to output a 
good model that generalizes well to the real world. Experimentation pipelines assume the data is mostly fixed - 
meaning, experimentation pipelines are model centric. 

Data engineering pipelines are data-centric. 

They’re focused on wrangling data: cleaning it, transforming it, and augmenting it. 

Data-centric pipelines let you pull in the data, transform it, load and change it and export it. Pachyderm is 
definitively data engineering focused (though its experimentation chops are growing with support for things 
like Notebooks that sport automatic mounting of Pachyderm repos right in the Notebook.)

Another key difference of data-centric pipelines is language agnosticism. While most experimentation 
pipelines are Python based because so much data science work is done in Python, that won’t work for data 
engineering. You may need any number of third party libraries for those transformation steps.  For instance, 
you might need to write something in C or Java or call a specialized audio library if we go back to our car audio 
command detection use case.

Source: AI Infrastructure Alliance
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Pachyderm is 100% language agnostic. You can run 
R in part of a pipeline, Python in another part, C in 
another and Java in a fourth step. That’s essential for 
working with these kinds of data transformations at 
scale. 

Your platform also needs to allow for robust version 
control and lineage. That’s the final piece of an 
excellent data-centric AI tool. It’s got to keep track 
of all the changes automatically. You’re going to 
be iterating on the dataset a lot and then running 
experiments to see if it worked. You need to be able 
to roll back to any previous version of the data or code 
and then roll forward again.

You’ll want to keep snapshots of all the data you 
use, and you’ll want immutable copies of that data. 
If you happen to overwrite some of your data or you 
shuffle it around and forget which copy had the 
right versions you needed to build your model that 
creates a mess for reproducibility. Any data versioning 
system that doesn’t keep immutable copies of every 
version of your data is only half baked. Immutable 
means that an older copy of the data can’t change. 
You can’t overwrite it or modify it. Instead, the system 
automatically makes a new, deduplicated copy and 
the lineage system keeps track of the changes and 
the differences between those snapshots for you. 

Without immutable data lineage, you can easily get 
into a situation where your metadata storage points 
to a state of the data that no longer exists. 

Take our audio command capture example: Imagine 
that you’ve added static and wind noise to the 
background of your samples but it doesn’t seem to be 
making a difference in accuracy. 

So you start iterating:

 ◆ You raise the sound of the voice and lower it

 ◆ You find new audio samples and add those to the 
background

 ◆ You include a wider range of weather noise 

 ◆ You include samples that are speaking faster, and 
more slowly

At some point you hit on the right set of synthetic 
data and your model starts performing a lot better 
with real world test data that has intense background 
noise. 

But you think you can do even better, so you do some 
more transformations. The new transformations don’t 
help. In fact, they make accuracy worse. You need to 
go back to the version of your data that produced the 
best result… but it’s gone. You overwrote the files by 
accident with the new test transformations. You can’t 
recreate your best results without a lot of engineering 
work.    

That brings us to the last couple of essential data-
centric AI ingredients.

Test, Test and Test Again
If you build combine strong test with version control in your data iterations, that can make your life a lot 
easier. If accuracy drops with new synthetic data, you simply roll back to an old snapshot, try some different 
transformations and then test again. Much of that work can be automated to run much more smoothly.

Even better, you’ll be ready to create human in the loop tests at each stage of your development process. 

Data-Centric AI: Better With Humans 

Let’s take a different use case here. You want to teach a model to detect defects in the solar panels your 
company manufactures. You’ve got a lot of pictures of good solar panels and a bunch of broken ones with 
cracks, splits, and scars fresh off the assembly line. 

You don’t have a labeling team in house so you use a third party software and people. We’ve seen companies 
like Scale AI and Snorkle AI post big valuations in recent days because they have tools to help speed up the 
tedious and time consuming process of labeling all that data accurately. 
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Perhaps one of those platforms gives you an 
automatic instance segment detector and it applies 
bounding boxes around what it thinks are the 
defective segments of the solar panel. 

Do you just hand those unlabeled images off to the 
magical segment detector and hope that it comes 
back correct? 

Of course not. It can and will miss things you want, 
or just highlight irrelevant segments of the image.  
Or it may be missing whole things that you consider 
defects, perhaps smaller defects and you need to go 
back and get it to highlight those missing spots.

No technique that speeds up labeling is perfect, 
and you still need a team of smart people to do that 
labeling even if the software speeds up how fast you 
can do it. 

Even after you’ve confirmed that the segment detector is doing a good job putting bounding boxes around the 
defects, you craft a human-in-the-loop test. You randomly pull images that are labeled and you inspect them 
visually to see if the bounding boxes make sense or if they’re off base. If the labels are off, you’ve got to go back 
and correct them. That may require you to do another test and another, as you go through iterations of labeling 
and inspecting the results. 

Automatic instance detector result

Automated result (left) vs. Human-labeled (right)
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Sentiment Analysis with  
Humans in the Loop

Let’s imagine another scenario. You’ve got a dataset 
of customer feedback and support cases. You want to 
train a system to detect whether the cases are urgent 
and if the customer is calm or angry. That will help 
you triage cases faster, by automatically sorting the 
most important cases to the top of the pile so your 
support team can fix the most important problems 
faster.

Perhaps the labeling software has a built-in sentiment 
analysis system and they give you back the data fully 
labeled as “angry,” “very angry,” “calm,” “neutral,” 
“happy,” etc. They also give you a score of 1-5 with 
5 being the most important based on the severity 
rating the cases had. 

Again, do you simply trust the labels?  No. You verify 
them with spot inspections and by having skilled 
domain experts review the spot inspections.

Perhaps your best support people go through a series 
of non-severe cases and realize many were urgent, 
but never got escalated. The support personnel were 
under load and decided to keep the rating on the 
severe cases down artificially, because more cases 
would have meant more stress and a longer wait 
times. 

Identifying the issues with your initial sentiment 
analysis and how to accurately identify cases in 
need of escalation isn’t an engineering problem - a 
domain expert must weigh the cases and see which 
information indicates that these cases are severe. 

You also have another team go through and 
categorize the sentiment of the cases on their own 
and then you can compare them to see how they 
match with the automatically labeled dataset. Is there 
a big delta between the automatic label and what the 
human reviewers think?

That takes us to our last ingredient.

Clarifying Instructions for  
Humans in the Loop

It’s easy to misinterpret instructions. A seemingly easy 
task can lead to a lot of different interpretations when 
different people do that same task. Andrew Ng uses 
a simple example to illustrate. Imagine someone is 
tasked with putting bounding boxes around animals 
in pictures.

As you can see, one person puts the bounding box 
around each animal individually. The other puts one 
big box around both animals. A third person overlaps 
the boxes.

At this point your first response might be “Why didn’t 
they just do what I asked?  They must not get it!” 
Instead, this is a signal to rethink your approach and 
ask, “How can I clarify my instructions to better 
explain what we need?” You may have to go through 
many rounds of clarifying the rules and instructions 
before your labelers provide exactly the results you’re 
looking to get. 

Source: MonkeyLearn

Photo courtesy of Andrew Ng’s Data-Centric AI presentation found here
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Let’s go back to our solar panel defects use case. You notice that some of the labelers are missing cracks of a 
certain size. Some are labeling anything that even looks like a minor scratch as a defect. 

At this point, you have to think clearly about what you 
know about your domain, or tap an expert to judge 
your results so you can better define your labeling. 
You’ll want to clarify factors like: 

 ◆ Are minor scratches a defect, or will the solar 
panels still do the job with those scratches and 
therefore you don’t want them labeled as defects?

 ◆ Is a divot in the panel a real defect or can the 
section that’s dented still function? 

 ◆ Are these performance defects, or cosmetic ones? 

 ◆ Should you have unique labels for cosmetic defects 
vs performance? 

Maybe those defects don’t really affect the 
performance of the unit,  but customers will still 
perceive them as broken, resulting in a higher rate 
of customer returns. In that case, you do want those 
minor defects labeled, and you need to adjust your 
instructions accordingly. 

Then again, maybe there is an acceptable risk level 
with minor defects. You have the team classify them 
as minor or major defects. This distinction could 
even change how your model is used in production. 
Perhaps major defects are automatically pulled off 
the line and scrapped, but minor defects are sent to 
an inspection team to judge whether the product is 
discarded, or safe to ship. 

This scenario brings us full circle: versioning your 
data as you go through many iterations of labeling, 
clarifying, and labeling again. Labeled data is good 
but versioned, labeled data is even better. 

By combining human-in-the-loop spot testing, 
clarifying instructions, re-labeling problem data, and 
versioning the different iterations, you can efficiently 
build a smooth, data-centric pipeline that drives major 
improvements in your model accuracy and how well it 
generalizes to real world conditions.

Source: Author via images from Shutterstock
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Focus Back on What Matters Now
For the longest time we’ve thought of ML code as the ‘cool’ part of data science. And in many ways, it is. Some 
of the biggest breakthroughs in the last decade, like Alphafold, came from fantastic algorithmic breakthroughs. 
But most of us aren’t doing AI research and trying to crack the protein folding challenge that stumped 
researchers for decades. 

Most business applications of AI are focused on more established use cases: churn prediction, computer vision, 
sentiment analysis, and business intelligence. We know what models will likely make the biggest difference, 
and we can start to treat most of the code as a solved problem. 

For most teams the algorithm is actually a very small component of the overall system, maybe 5% or less. 

The Other 95% of Machine Learning

Collecting data, verifying it, transforming it, augmenting it, creating additional synthetic data and feature 
extraction are all much, much bigger factors in the success of a given machine learning process. 

The lion’s share of modern AI system complexity is bound to processing, monitoring, transformation, 
augmentation and handling all that data. These steps engage with multiple backend systems, traversing 
database and object stores, passing through multiple RBAC systems along the way, not to mention your MLOps 
tools themselves. 

Without automated versioning and lineage, building workarounds and investigating bugs can lead to a lot of 
data-specific technical debt. 

The key to data-centric AI is focusing back on where we spend most of our time anyway: Treating data as the 
core of the machine learning process - not as an afterthought.

Do that, and you’re on your way to a powerful data-centric AI solution that delivers big results in the real world.
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Contact Pachyderm

To learn more about Pachyderm’s machine learning  
solutions, contact us:

info@pachyderm.com   •   888-338-9597   •    www.pachyderm.com

Pachyderm Enables Data-Centric AI 
Pachyderm is the leader in data versioning and pipelines for MLOps. 
Pachyderm provides the data foundation that allows data science 
teams to automate and scale their machine learning lifecycle while 
guaranteeing reproducibility.

Why Pachyderm? 

Automated Data Versioning 

Enable collaboration through data version commits, branches and 
rollbacks that eliminate data duplication. Automate a complete audit trail 
for all data and artifacts across pipeline stages stored as native objects, 
so that versioning is automatic and reliable.

Data-Driven Pipelines  

Our Kubernetes native approach supports any library or language, and 
the datum-centric approach to pipelines enables parallel processing 
of large data sets. Data-driven pipelines execute when new data is 
committed without additional code.

Immutable Data Lineage 

Track every version of your code, models, and data, maintain 
reproducibility of data and code for compliance, and manage 
relationships between historical data states. Pachyderm’s Global IDs 
make it easy for teams to track any result all the way back to its raw 
input, including all analysis, parameters, code, and intermediate results.

Improved Collaboration 
with MLOps Tools

Pachyderm Console provides 
an intuitive visualization of your 
DAG and aids in reproducibility

JupyterLab Mount Extension 
adds a point-and-click interface 
to Pachyderm versioned data

Enterprise Administration 
contains robust tools for 
administering Pachyderm at 
scale across your teams

Try Pachyderm for Free
Get a free 30-day trial of Pachyderm’s Enterprise 
features at pachyderm.com/trial
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